Code: CS3T4

II B.Tech - I Semester-Regular/Supplementary Examinations November 2016

FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE AND ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) List any two applications of finite automata.
b) Define a string. Identify the set of strings generated by the language $\mathrm{L}=\{\mathrm{w} / \mathrm{w}$ is a binary integer that is prime $\}$.
c) Design automata for a switch.
d) Identify the language generated by the regular expression (10)* $1+1 * 01$.
e) Define Regular Grammar. Write an example for Right Linear Grammar.
f) Write any two differences between Context-Free Grammar and Regular Grammar.
g) Define Instantaneous description of Push down Automata.
h) Design a Turing machine which finds the one's complement of a given binary integer?
i) Write short notes on Church's hypothesis.
j) What is PCP?
k) List any two examples for the languages that are not recursively enumerable.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.

a) Design a DFA accepting the language $\mathrm{L}=\left\{\mathrm{w} \varepsilon\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}\right.$ / w starts and ends with the same symbol \} 8 M
b) Design a Moore Machine to determine the residue $\bmod 4$ for each binary string treated as integer.
3.
a) State and Prove Pumping lemma for regular sets. 8 M
b) Find NFA- ε for the left linear grammar $\mathbf{S} \boldsymbol{\rightarrow} \mathbf{S 1 0 / 0} . \quad 8 \mathrm{M}$
4.
a) Eliminate the useless, unit and null productions from the grammar.

8 M
$\mathrm{S} \rightarrow \mathrm{aA} / \mathbf{a B B}$
$\mathrm{A} \rightarrow \mathrm{aaA} / \boldsymbol{\varepsilon}$
$\mathrm{B} \rightarrow \mathrm{bB} / \mathrm{bbC}$
C \rightarrow B
b) Construct a PDA for the language with set of all strings over alphabet $\{a, b\}$ with exactly twice as many a's as b's. 8 M
5.
a) List and explain the types of Turing machines.
b) Design a Turing machine accepting the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} / \mathrm{n} \geq 1\right\}$ 8 M
6.
a) Show that the following PCP has a solution and give the solution.

8 M

	List A	List B
i	w_{i}	x_{i}
1	11	111
2	100	001
3	111	11

b) Write short notes on undecidability of complement of a language.

